A NEW METHOD FOR COUPLING GLUCOSE DEHYDROGENASE TO GLASS TUBES ACTIVATED WITH TITANIUM TETRACHLORIDE

Emmanuel BISSE, André SCHOLER and Dieter J. VONDERSCHMITT Klinisch-chemisches Laboratorium, Kantonsspital, CH-4031 Basle, Switzerland

Received 14 January 1982

1. Introduction

Although a number of papers have been published concerning the immobilization of various enzymes, few or no methods have been reported on the use of glass-tubes as solid support for the coupling of enzymes [1].

However, many studies on enzymes immobilized on controlled-pore glass have appeared in the literature [2-8]. In these methods the controlled-pore glasses were used in particle form of the size of 40-80 mesh with pore diam. 55 nm.

Here, we describe a new approach for coupling of enzymes to glass tubes. The procedure consists in placing chemical coupling agent on the glass surface, involving silanization of glass and activation of silane-coated glass with transition metal salts such as TiCl₄.

The glucose dehydrogenase (Glc-DH) bound to glass tube shows a high activity, superior to the one attained by the procedures in [9,10].

2. Materials and methods

Borosilicate glass tubes formed to a coil (length, 660 nm; inner diameter, 1 mm; diameter of helix, 8 mm) were used as a carrier for coupling of glucose dehydrogenase. The inner wall of the glass coil was washed with toluene and thoroughly dried overnight at 130°C in vacuum.

The inner surface of the glass tube was silanized by treating the glass with 15% α -aminopropyltriethoxy-silane in toluene for 24 h at 130°C. The coil was allowed to cool down to room temperature, then 50 ml toluene was pumped through the glass tube. The empty coil was then heated at 130°C in vacuum overnight. This silanization process was repeated a second time.

The coated glass tubing was rinsed first with toluene then with n-pentane and reacted with TiCl₄, 15% in n-pentane, at room temperature for 1 h. After drying the tube for 12 h at 50°C in vacuum, it was rinsed with 200 ml 0.5 mol/l NaCl in 0.1 mol/l phosphate buffer (pH 7.6 at 25°C). Glucose dehydrogenase (260 U/mg protein, a gift from E. Merck Darmstadt) was then coupled as in [10].

Glucose concentrations were measured with a dual channel system (Technicon Auto-analyzer II System) wherein the second channel served as a blank channel to correct for initial absorbance at 340 nm (fig.1).

3. Results and discussion

Fig.2 shows the effect of pH on the glucose dehydrogenase coupled to the glass tube. The free enzyme shows an optimum at pH 8 [11]. The glass coil coated with Glc-DH shows an optimum at pH 7.7, so the shift in pH optimum is small as compared to the glucose dehydrogenase derivatives in [10].

The classic Hofstee plot yields a straight line. The

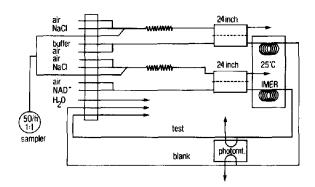


Fig.1. Flow diagram.

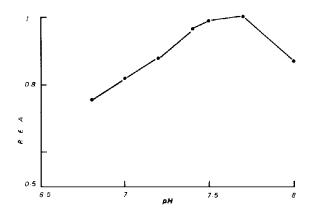


Fig.2. pH Activity profile of glucose dehydrogenase coupled to the glass tube. REA, relative enzyme activity. The reactor was incubated (25 min at 25°C) at different pH values (glucose, 27.8 mmol/l; NAD, 4.4 mmol/l).

 $K_{\rm m}$ is 1.6 \times 10⁻² M and the specific activity was determined to be 9.4 μ mol . cm⁻¹. min⁻¹.

The range of linearity for the determination of [glucose] is 0-27.5 mmol glucose/1.

The stability of immobilized enzyme in continuous operation is the major problem in analytical systems with bound enzymes. The durability of glass coils coated with Glc-DH is good. The decrease in activity on continuous operation for 4 weeks is illustrated in fig.5. During this period the reactor was connected to the SMAC (Technicon, Tarritown NY) (high speed continuous-flow analyzer) system and ~400 samples were analyzed every day. The activity was reduced to 50% after 24 days only. The half-life

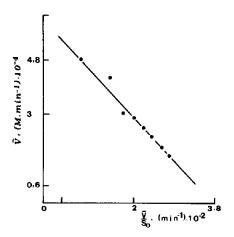


Fig.3. Classic Hofstee plot of $\overline{\nu}$ versus $\overline{\nu}/S_0$ ($\overline{\nu}$ is the mean rate of the reaction). Glucose concentration range 2.4-57 mmol/l.

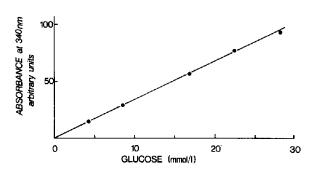


Fig.4. Linearity of the method over 0-30 mmol glucose/L.

determined from linear regression of a representation of the logarithm of activity versus time was found to be 24 days. In order to gain information on how the silanized glass is activated by $TiCl_4$, we investigated some factors affecting the yield in activity of Glc-DH bound to glass tubes. Compared to the above procedure, the yield in activity was 76% and 55% when tetraethoxysilane and diphenylsilanediol were used, respectively, in place of α -aminotriethoxysilane. It was 6% when the coupling of enzyme was carried out with a silanized glass without preactivation with $TiCl_4$. These results permit one to conclude that:

- 1. TiCl₄ condenses with unreacted hydrolyzable groups (ester or hydroxyl) on the surface of the silanized glass.
- The coupling of enzyme occurs through the Ti(IV)ion.

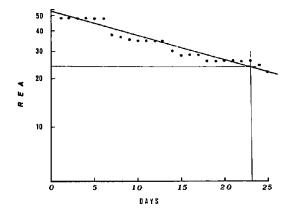


Fig.5. Decline of activity of Glc-DH glass-coils during continuous operation (4 weeks): (•) activity of reactor as function of time; (•) linear regression of log activity versus time for half-life determination. Half-life = 24 days. REA, relative enzyme activity.

We therefore propose the schematic representation of the coupling reaction as follows:

Silane coated glass

$$CI$$

$$CI - TICI_3$$

$$CI$$

$$CI - TICI_3$$

$$CI$$

$$CI - TI - E$$

$$CI$$

$$CI - TI - E$$

$$CI$$

X = hydrolyzable groups

R =organic functional or alkyl groups

References

- Bissé, E. and Fa. E. Merck Darmstadt (1980) Ger. Patent 3033076.8.
- [2] Messing, R. A. (1970) Enzymologia 39, 12-14.
- [3] Messing, R. A. (1970) Enzymologia 38, 39-42.
- [4] Messing, R. A. (1970) Enzymologia 38, 370-372.
- [5] Weetall, H. H. (1969) Science 166, 615-616.
- [6] Baum, G., Ward, F. B. and Weetall, H. H. (1972) Biochim, Biophys. Acta 268, 411-414.
- [7] Weibel, M. K., Dritschilo, W., Bright, H. J. and Humphrey, A. E. (1973) Anal. Biochem. 52, 402-414.
- [8] Dritschilo, W. and Weibel, M. K. Biochem. Med. 9, 32-40.
- [9] Bissé, E. and Vonderschmitt, D. J. (1977) FEBS Lett. 81, 326-330.
- [10] Bissé, E. and Vonderschmitt, D. J. (1978) FEBS Lett. 93, 102-104.
- [11] Pauly, H. E. and Pfleiderer, G. Hoppe-Seyler's Z. Physiol. Chem. 365, 1613-1623.